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Abstract—Simulink is a widely used model-driven design envi-
ronment for supporting the simulation and code generation of
embedded applications. To improve the quality of the code gen-
erated from Simulink models, state-of-the-art code generators
employ various high-level optimizations, like eliminating local
variables. However, they overlook the compatibility between code
and the low-level processor architecture, especially the instruc-
tion pipeline. Consequently, instruction pipeline stalls occur
frequently, leading to additional delays in instruction execution,
as well as limited efficiency for deployed the embedded software.
In this article, we propose Mercury, an instruction pipeline aware
code generator for Simulink models which utilizes data depen-
dencies between actors to decrease the instruction pipeline stalls
of the generated code. First, Mercury collects data dependencies
through model dataflow traversal and records the property of
each actor. Then, Mercury approximately estimates the execu-
tion latency of required instructions fetched from corresponding
actors and uses a topology-based method to obtain candidate
actors for code synthesis. Finally, Mercury adopts the least
penalty priority to iteratively select the most suitable actor for
code synthesis and releases data dependencies with its subsequent
actors. We implemented and evaluated Mercury on benchmark
Simulink models (Su et al., 2021) as well as a real industrial
model. Compared to the official tool Simulink Embedded Coder
and the state-of-the-art academic tool DFSynth, Mercury out-
performed them by 9.7%–33.4% and 9.2%–59.4% in terms of
the execution time of the generated code across different archi-
tectures, respectively. The statistics also demonstrate that the
generated code of Mercury increases utilization of pipeline slots
by 11.0%–37.1% and 10.6%–50.0%, respectively.

Manuscript received 1 August 2022; accepted 2 August 2022. Date of pub-
lication 22 August 2022; date of current version 24 October 2022. This
work was supported in part by NSFC Program under Grant 62022046,
Grant 92167101, Grant U1911401, Grant 62021002, and Grant 62192730;
in part by the National Key Research and Development Project under
Grant 2019YFB1706203 and Grant No2021QY0604; and in part by MIIT
Project (Design of Intelligent Networked Vehicle Based on SOA Central
Control). This article was presented at the International Conference on
Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-
TCAD special issue. This article was recommended by Associate Editor
A. K. Coskun. (Corresponding authors: Yu Jiang; Zhuo Su.)

Zehong Yu, Zhuo Su, Jie Liang, and Yu Jiang are with
the KLISS, BNRist, School of Software, Tsinghua University,
Beijing 100084, China (e-mail: yzhddding@gmail.com; suzcpp@gmail.com;
jiangyu198964@126.com).

Yixiao Yang and Rui Wang are with the Information Engineering
College, Capital Normal University, Beijing 100048, China
(e-mail: rwang04@163.com).

Aiguo Cui is with the Godel Labs, Huawei Technologies Company Ltd.,
Shanghai 200120, China (e-mail: ag.cui@huawei.com).

Wanli Chang is with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China
(e-mail: wanli.chang.rts@gmail.com).

Digital Object Identifier 10.1109/TCAD.2022.3199967

Index Terms—Code generation, instruction pipeline, Simulink
models.

I. INTRODUCTION

S IMULINK [2] is a widely used model-driven design
environment and has become very popular in embedded

scenarios, such as vehicle control systems, autonomous driv-
ing, and aerospace development [3], [4], [5]. It offers various
toolsets, such as model-based simulation, verification, and code
generation to facilitate the development of embedded software.
Due to the resource limitation of embedded devices, code gen-
eration needs to be taken seriously since the quality of generated
code directly affects the efficiency of the entire system.

Recently, some noteworthy tools for generating high-quality
code have emerged in both industry and academia. In industry,
for example, Simulink Embedded Coder [6] is the most widely
used commercial tool. It supports the generation of production-
quality code for models satisfying its modeling semantics. The
quality is ensured by various optimizations, such as reusable
data exploitation, local variable elimination, and single instruc-
tion multiple data (SIMD) instruction utilization. As a result,
most developers can deploy the generated code into embed-
ded devices directly without any modifications. In academics,
for example, DFSynth [1] focuses on generating more effi-
cient code for models containing complex branch actors like
BooleanSwitch, while retaining the structure information of
original models. Besides, DFSynth supports generating code
with well-structured code templates.

However, these state-of-the-art code generators overlook the
compatibility between code and low-level processor archi-
tecture, especially the instruction pipeline. In other words,
all these generators translate the model into code contain-
ing multiple parts with data dependencies, running in serial
without interleaved execution of independent instructions.
Consequently, instruction pipeline stalls occur frequently.
Specifically, the execution of one instruction needs to wait for
the processing of other instructions, leading to extra latency
for instruction execution. As a result, the efficiency of the
generated and deployed embedded software is limited.

For example, Simulink Embedded Coder translates the
model shown in Fig. 1 in the following steps: 1) obtains data
from inport1 and calculates the absolute value of it; 2) obtains
data from Const and adds up the result of step 1 to translate
Add actor; 3) obtains data from inport2 to perform correspond-
ing exponential operation; and 4) combines results of steps 2
and 3 into a vector output. However, it leads to a read-after-
write (RAW) hazard since the execution of step 2 needs to
wait for the result in step 1 (lines 3 and 4), which introduces
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Fig. 1. Sample Simulink model and the corresponding code generated by
Simulink Embedded Coder. The model combines the data from inport1 and
inport2 after they finish relevant operations. Because of data dependencies,
the generated code will cause massive instruction pipeline stalls.

instruction pipeline stalls. They can be avoided by swapping
the translation order of Math actor and Abs actor.

To generate pipeline-friendly code that decreases instruction
pipeline stalls during execution, we have to struggle with the
following two challenges.

The first challenge arises in constructing a pipeline-
friendly translation sequence of model actors. A well-designed
sequence can reduce the occurrence of instruction pipeline
stalls. Specifically, when selecting the next actor in the con-
struction of a translation sequence, there might be multiple
available options to choose from. However, a slight difference
in the selection may lead to serious performance gaps in the
generated code. For example, suppose we translate actors with
data dependencies at the same time. Since the data needed by
one actor may be occupied by others, it is not possible to
execute the actors in parallel, resulting in additional overhead
for the embedded software. In particular, due to the lack of
processor parameters and other relevant information, the code
generator cannot retrieve the execution latency of the corre-
sponding actor and thus cannot determine whether the required
data has been released by others. Therefore, it is challenging
to iteratively select the most suitable actor for the translation
sequence to improve the performance of the generated code.

The second challenge arises in maintaining the semantic con-
sistency between the pipeline-friendly translation sequence and
the model. For code generation, it is of paramount importance
to ensure the consistent semantics of the model and generated
code. However, adjusting the translation order of actors into
pipeline-friendly code may break the semantic consistency. For
example, when swapping the code in lines 3 and 7 of Fig. 1, the
instruction pipeline stall can be avoided, but the generated code
will output the wrong result. In general, to maintain semantic
consistency, code generation is guided by the control logic of
the entire model analyzed from the dataflow graph. But the
increasing complexity of models and rich modeling semantics
result in difficulties in collecting and analyzing data depen-
dencies among actors. For example, circular data dependencies
may exist within the Simulink model. They cause infinite loops
in fully collecting data dependencies. More importantly, with-
out precise data dependencies, the code generator is unable to
generate code that maintains the original semantics.

To address the aforementioned challenges, we propose
Mercury, an instruction pipeline aware code generator for
Simulink models. Mercury mainly consists of three steps.
First, Mercury traverses the model dataflow graph to collect
data dependencies between actors and records the property
of each actor. Second, Mercury approximately estimates the
execution latency of each actor based on the complexity of
corresponding instructions and processor parameters. With the

analysis of collected data dependencies through a topology-
based method, Mercury obtains the candidate actors in each
iteration of translation while retaining the original model
semantics. Finally, according to the gathered information,
Mercury adopts the least penalty priority to iteratively select
the most suitable actor in generating a translation sequence,
avoiding the occurrences of instruction pipeline stalls, thus
improving the execution efficiency of the generated code. After
that, Mercury releases data dependencies pointed from the
selected actor and assigns the penalty value for actors.

We implemented Mercury and evaluated it on benchmark
Simulink models [1] as well as a real industrial model. The
results demonstrate that Mercury gains the great performance.
Compared to the official tool Simulink Embedded Coder
and the state-of-the-art academic tool DFSynth, the code
generated by Mercury achieved an improvement of 10.0%–
33.4% and 12.1%–59.4% in terms of execution time on the
Intel x86 architecture processor, respectively. Furthermore,
improvements to other tools in extended experiments on
ARM architecture processors show that Mercury is also the
cross-architecture compatible. More importantly, according to
statistics from Intel VTune profiler, compared with Simulink
Embedded Coder and DFSynth, Mercury increases the utiliza-
tion of pipeline slots in 11.0%–37.1% and 10.6%–50.0%.

In summary, this article makes the following contributions.
1) We identify that state-of-the-art code generators do not

take full advantage of the instruction pipeline, result-
ing in frequent pipeline stalls in the generated code,
which leads to additional execution time and limited
performance of the embedded software.

2) We implement Mercury, an instruction aware code gen-
erator for Simulink models. The Mercury traverses
model dataflow to collect data dependencies and esti-
mates the execution latency of each actor. Leveraging
the collected information, Mercury generates instruction
pipeline-friendly code.

3) We apply Mercury on a benchmark of ten commonly used
Simulink models and a real industry model. The results
show that Mercury outperformed Simulink Embedded
Coder and DFSynth across different architectures.

II. BACKGROUND

A. Code Generation for Simulink Model

Code generation is of vital importance in model-driven
design tools, which releases the developers from error-prone
manual coding. For the constructed Simulink model, develop-
ers can adopt various code generators to generate production-
level code that can be directly deployed to embedded devices,
facilitating the efficiency of embedded software develop-
ment [1], [7], [8]. The code generation process of most code
generators can be divided into the following steps [9]. First,
they transfer the model file into a customized intermediate rep-
resentation (IR) to record the corresponding information, such
as actor details, data dependencies, inports, and outports. Then,
they extract the scheduling relations between actors. Finally,
they perform code synthesis for each actor and integrate them
according to the scheduling relations.

Since there exists a tradeoff between capacity and eco-
nomics for embedded devices, the quality of the generated
code is critical to improving the overall performance of the
embedded system [10]. The execution efficiency of the gener-
ated code is one of the primary indicators of code quality, and
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there have been some noteworthy efforts trying to improve
it. They attempt various optimization techniques for code
generation, such as reusable data exploitation, SIMD instruc-
tion utilization, and branch elimination [6]. These techniques
mainly focus on the code itself, resulting in a bottleneck in
making further improvements. However, with the development
of the processor architecture, numerous processor features
may bring opportunities to improve the performance of code
generation [11]. For example, if we can break some data
hazards within the generated code, it will improve the utiliza-
tion of processors and reduce instruction pipeline stalls, thus
improving the overall efficiency of the embedded system.

B. Instruction Pipeline

Instruction pipeline is a subtle design inside the proces-
sor to improve the efficiency of the processor in executing
instructions [12], [13]. In general, depending on the opera-
tions, it can be divided into two parts, namely, frontend and
backend. The frontend consists of two stages, namely, instruc-
tion fetching and instruction decoding. The backend mainly
contains three stages, namely, execution, memory access, and
write-back. Each stage has a special processing unit, allowing
the parallel execution of different operations in the multistage
pipeline architecture [11]. Modern processors divide one of the
stages into more smaller stages to introduce the architecture
optimization, which makes the pipeline more complex. For
example, to implement speculative execution, reading/writing
register file, and calculating branch jump address are sepa-
rated from the instruction decoding stage. Furthermore, the
multiple instruction issue mechanism is introduced to achieve
the higher performance by increasing the width of the instruc-
tion pipeline [14]. It allows multiple instructions to be fetched
and decoded simultaneously at the frontend of the instruc-
tion pipeline. In this way, several instructions with no data
dependency among them can be issued and completed on the
corresponding functional units at the backend of the instruction
pipeline at every clock cycle.

The instruction pipeline stall represents that the execu-
tion of some instructions needs to wait for the processing of
other instructions [11]. The instruction pipeline stall inside the
deployed code will prevent subsequent instructions from being
issued to the corresponding processing units for parallel exe-
cution, thus decreasing the overall performance. Data hazard
is one of the main factors causing the instruction pipeline stall,
occurring when instructions with data dependencies access or
modify the same data in different stages of the instruction
pipeline [15]. It can be divided into three kinds of data hazards:
RAW hazard, write-after-read (WAR) hazard, and write-after-
write (WAW) hazard [16]. For example, RAW hazard occurs
when the latter instruction attempts to read the data before
the former instruction writes it. Therefore, it is important to
decrease the data hazards in code generation, which is sup-
posed to be able to improve instruction pipeline utilization
during the execution of the generated code.

III. MOTIVATION

State-of-the-art code generators such as Simulink Embedded
Coder generally translate the Simulink model into embedded
code based on the data dependencies among actors strictly,
as shown in Fig. 1. Basically, they iteratively select an actor
without any data dependency and its subsequent actors for

Fig. 2. Performance profiling results of the code generated by Simulink
Embedded Coder and the code optimized by the idea of Mercury from Intel
VTune profiler. For processors under CISC architectures, the macro instruc-
tions are broken down into several micro-operation (µOps) for execution.
The pipeline slots represent the number of µOps that can be issued simul-
taneously at all clock cycles. The retiring chunk represents the fraction that
the issued µOps get executed. That is, it represents the fraction of pipeline
slots utilized by useful work. Memory-bound chunk represents the fraction
with stalls caused by the corresponding LOAD or STORE instructions. Core
bound chunk mainly results from the shortage in hardware devices. The others
chunk represents frontend bound and bad speculation. The result illustrates
that avoiding the instruction pipeline stalls can improve the efficiency of the
generated code greatly.

translation until there are no subsequent actors or the sub-
sequent actors have additional data dependencies. Then, they
search for other available actors and repeat the aforementioned
step. We observe that the aforementioned steps for code gener-
ation lead to the execution of latter actors heavily depending on
the result produced by the former actors, introducing a signif-
icant amount of instruction pipeline stalls. Instruction pipeline
stalls inside the generated code cause less instructions to be
issued simultaneously by the processor, which decreases the
utilization of pipeline slots, thus bringing a negative impact
on the performance of the generated code. More specifically,
when deployed in embedded devices with limited capability,
the generated code experiences decreased performance.

To quantitatively understand the severity of the aforemen-
tioned problem, we analyze the pipeline slots utilization of
code generated by Simulink Embedded Coder, according to
the performance metrics obtained from Intel VTune profiler.
The pipeline slots are divided into the following chunks:
retiring, memory bound, core bound, and others. Since the
retiring chunk represents the fraction of pipeline slots that
the issued µOps eventually get executed, we use it as the
indicator to evaluate the utilization of pipeline slots. Take a
sample Simulink model as an example, Fig. 2 demonstrates
the performance profiling results of the code generated by
Simulink Embedded Coder. The statistics show that only
roughly one-third of pipeline slots eventually retired the issued
µOps, incurring significant overhead for execution.

Since Mercury avoids pipeline stalls by utilizing data depen-
dencies, it increases µOps that can be processed simultane-
ously. However, when the number of instructions exceeds the
capacity of the pipeline’s frontend, it leads to excessive fetch
latency without sending µOps in time or insufficient decode
capacity to fully utilize the fetch bandwidth, thus increasing
the fraction of others chunk.

Basic Idea of Mercury: The Simulink model contains abun-
dant data dependencies. Mercury addresses the aforementioned
problem by fully utilizing those information to avoid data haz-
ards, improving the execution efficiency of the generated code.
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Fig. 3. Overall framework of Mercury. 1) In the first step, Mercury obtains the corresponding property of each actor and data dependencies between actors.
2) In the second step, Mercury fetches the needed instructions which are used to execute the corresponding actor and approximately estimates the execution
latency of it. Then, the Mercury obtains the candidate actors without data dependency pointing from others. 3) In the third step, Mercury adopts the least
penalty priority to iteratively select the most suitable actor for translation. After that, Mercury releases data dependencies pointing from the selected actors and
updates the penalty value of actors. Finally, Mercury performs code synthesis for each actor in the translation sequence for generating pipeline-friendly code.

The main idea is that, after selecting an actor for translation,
it will not select its subsequent actors directly but the other
actors without data dependency for translation to decrease the
occurrence of instruction pipeline stalls. The statistics in Fig. 2
illustrate that based on the optimization of Mercury, the exe-
cution time of the code generated by the optimized engine
decreases by 26.1% compared with the original code generated
by Simulink Embedded Coder.

IV. MERCURY DESIGN

In this section, we detail the design of Mercury. Mercury
takes Simulink model, model actor library, and target pro-
cessor parameters as input and generates pipeline-friendly
embedded code, which can be directly deployed on embed-
ded devices with less instruction pipeline stalls. Fig. 3 shows
the overall framework of Mercury. It mainly consists of three
steps: 1) pipeline-sensitive content collection; 2) critical actor
identification; and 3) pipeline-friendly code synthesis.

In the first step, Mercury identifies and records the prop-
erty of each actor in the Simulink model. Then, Mercury
traverses the model dataflow to obtain data dependencies
between actors. In the second step, Mercury fetches the neces-
sary instructions which are used to execute the corresponding
actor from the model actor library. Based on the execution
latency of each instruction obtained from processor parame-
ters, Mercury approximately estimates the execution latency
of actors. Then, Mercury adopts a topology-based method to
analyze data dependencies to obtain the candidate actors in
each iteration of the translation process. The candidate actor
means that there is no data dependency pointing to it. In
the third step, according to the collected information in the
second step, Mercury adopts the least penalty priority to iter-
atively select the most suitable actor in generating translation
sequences. Then, Mercury releases data dependencies point-
ing from the selected actor and updates the penalty value for
its subsequent actors and remaining candidate actors. Finally,
Mercury performs code synthesis for each actor in the transla-
tion sequence for generating pipeline-friendly embedded code,
decreasing the occurrences of instruction pipeline stalls.

A. Pipeline-Sensitive Content Collection

Mercury first parses the given model into a well-structured
IR as the preparation step. The IR contains the inports,

Fig. 4. Fragment of IR. It contains the inports and outports, actors, relations,
and other useful elements related to corresponding Simulink models. The
inside of each element in IR contains detailed information.

outports, actors, relations between actors, etc. Based on the
information contained in IR, especially relations, Mercury
extracts the model dataflow. After that, Mercury traverses
the model dataflow to get data dependencies between actors
and filters the properties of actors in IR, such as actor type,
parameters, inports, and outports. Furthermore, the detailed
information inside each element of IR will be retained for
further analysis. For example, as shown in Fig. 4, the ele-
ment “Actor” in IR contains the information of its name, type,
inports, and outports, which will be used for generating code
for this actor.

The overall procedure of collecting pipeline-sensitive con-
tent inside Simulink models is shown in Algorithm 1. Before
collecting data dependencies and identifying the corresponding
actors, Mercury needs to break the circular data dependencies
inside the Simulink model. This causes infinite loops in fully
collecting data dependencies. Since there exists a data delay
actor for each back edge of the loop in the Simulink model,
we can simply break the loop by dividing the actor into two
parts: 1) data storage and 2) data fetch. For example, suppose
a0 → a1 → a2 → a0 is a loop inside dataflow, and a2 is the
data delay actor. Mercury divides a2 into a′

2 and a′′
2, a′

2 points
to a0 and a′′

2 is pointed by a1. After that, the loop becomes
a sequence a′

2 → a0 → a1 → a′′
2. Then, Mercury adopts the

BFS method for each inport of the model to traverse the entire
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Algorithm 1: Pipeline-Sensitive Content Collection
Input: Dataflow: Dataflow of the model

Inports: Inports of the model
IR: Intermediate Representation of the model

Output: ActorProp: HashMap (actor → actor’s property)
Dependency: HashMap (actor → actors that points to key
actor)

1 breakLoop(Dataflow)

2 actors = ∅

3 // Dataflow traversal
4 for inport in Inports do
5 queue.push(getSubsequentActors(inport, Dataflow))
6 while queue �= ∅ do
7 current = queue.pop()
8 subsequents = getSubsequentActors(current, Dataflow)

9 for actor in subsequents do
10 if actor /∈ actors then
11 queue.push(actor)
12 end
13 // Collect data dependency
14 Dependency[actor].add(current)
15 end
16 end
17 end
18 // Model actor identification
19 for actor in actors do
20 // Filter properties of actor in IR
21 ActorProp[actor] = IR.filterProperty(actor)
22 end

dataflow (lines 4–17). Mercury obtains the subsequent actors
of model’s inport by searching in dataflow and pushes them
into queue which stores actors that need to be traversed. After
that, Mercury selects the top actor in the queue and obtains
its subsequent actors for collecting data dependencies until the
queue is empty (lines 6 and 7). Mercury collects data depen-
dencies by adding a former actor into the corresponding entry
of Dependency. For instance, assume that {a1, a2} is a collec-
tion of a0’s subsequent actors, then Mercury adds a0 to the
entry Dependency[a1] and Dependency[a2], respectively. For
each actor, Mercury uses ActorProp to record the properties of
it by filtering the content of IR for further usage (lines 19–22).
To perform the aforementioned steps efficiently, ActorProp and
Dependency are designed as HashMap structures. Finally, after
all the actors have been traversed, the collected information
will be further analyzed by Mercury to avoid the occurrence
of instruction pipeline stalls, thus improving the execution
efficiency of the generated code.

B. Critical Actor Identification

In order to iteratively select the most suitable actor for code
synthesis, Mercury should approximately estimate the execu-
tion latency of each actor and adopt a topology-based method
to obtain the candidate actors that have no data dependency
pointing from others. Algorithm 2 shows the overall process
of critical actor identification.

Instruction Fetch: Mercury supports a well-structured
library of actors represented in XML format to fetch the
required instructions for executing actors. Mercury first fil-
ters the model actor library according to the type of each
actor. Then, Mercury matches the type of inports and outports
with filtered information and obtains the instructions inside
it. More specifically, for the array type of inports and out-
ports, Mercury repeats the obtained instructions based on the
length of I/O ports. Taking the actor in Fig. 4 as an example,
assume Mercury needs to fetch the instructions of it. Since the

Fig. 5. Example of the model actor library. This example represents the
required instructions for a sub actor. It contains two MOV instructions and a
sub instruction for the execution of the Sub actor.

TABLE I
LATENCY OF TYPICAL INSTRUCTIONS

actor type is “sum,” the required operations should be “add” or
“sub.” The type “i32” demonstrates that the input value and
output value of the actor are 32-bit integers. The parameter
value “+−” reflects that the operation of the first inport is
Add and the operation of the second inport is Sub. Therefore,
the operation of this actor is to output the value of subtracting
its two inports. After that, Mercury matches the actor’s oper-
ation and data type with the model actor library to fetch the
required instructions, as shown in Fig. 5.

Execution Latency Estimation: The statistics from [17] is
used as processor parameters to assist Mercury to approxi-
mately estimate the execution latency of obtained instructions.
Table I shows the latency of some typical instructions in the
x86 architecture. The latency required for each instruction may
be different due to the usage and operands of the correspond-
ing instruction. For example, the two MOV instructions shown
in Table I have different latencies. The operand of the lat-
ter instruction needs to access memory for the required data,
resulting in extra overhead than accessing registers, thus hav-
ing more latency than the former instruction. Besides, the
execution latency of the same instruction may vary in differ-
ent architectures. Therefore, Mercury should precisely match
instruction’s operands and target processor architecture with
processor parameters to obtain the required execution latency.
After that, for each fetched instruction, Mercury adds up
the estimated latency and stores it into a corresponding data
structure for further usage (lines 5–9).

Data Dependency Analysis: Each data dependency inside
the Simulink model has its direction representing the data
transfer from the outport of one actor to the inport of another
actor. However, the mistake order of translation sequence
without conforming to these data dependencies results in func-
tional inconsistencies between the model and generated code.
For example, suppose Mercury translates the Abs actor after
the Add actor for the model shown in Fig. 1. The mean-
ing of the generated code becomes calculating the absolute
value of inport1 after adding up the value from Abs with a
constant. This will lead to inconsistent results between the
execution of the generated code and the simulation of the
model. Therefore, it is of paramount importance to confirm
the data dependencies inside Simulink models for generat-
ing a translation sequence correctly with retaining the original
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Algorithm 2: Critical Actor Identification
Input: ActorList: Actors that required translation

ActorProp: HashMap (actor → actor’s property)
ProcessorInfo: Target processor information
Dependency: HashMap (actor → actors that are dependent
on key actor)

Output: Latency: HashMap (actor → actor’s execution latency)
Actors: Candidate actors

1 for actor in ActorList do
2 latency = 0
3 // Fetch corresponding instructions from actor
4 Instructions = loadActorLibrary(ActorProp[actor])
5 for instruction in Instructions do
6 // Estimate required clock cycles of instruction
7 latency+ = getLatency(instruction,ProcessorInfo)
8 end
9 Latency[actor] = latency

10 end
11 // Find actors that have no dependencies pointing by others
12 Actors = ∅

13 for actor in Dependency do
14 if Dependency[actor] = ∅ then
15 Actors.add(actor)
16 end
17 end

modeling semantics. Mercury adopts a topology-based method
to obtain the candidate actors to address the aforementioned
problem. In each iteration of generating translation sequence,
Mercury traverses the Dependency mentioned in Algorithm 1.
For actors that are without any data dependencies, Mercury
marks it as a candidate and adds it to the actor list for select-
ing the most suitable actors in model translation (lines 13–17).
In this way, Mercury ensures that the actor is unable to exe-
cute until obtaining the required data, thus guaranteeing the
correctness of the translation sequence.

C. Pipeline-Friendly Code Synthesis

Mercury applies the least penalty priority to generate the
translation sequence. The objective of Mercury is to itera-
tively select the most suitable actor that has the minimum
penalty value. After that, Mercury updates the penalty value
for candidate actors and assigns the penalty value for subse-
quent actors of the selected actor, used in the next iteration.
Finally, Mercury performs code synthesis to generate pipeline-
friendly code for the target Simulink model according to the
order of obtained translation sequence.

Model Actor Selection: Before performing code synthesis for
each actor, Mercury iteratively selects the most suitable actor
for generating the translation sequence. Algorithm 3 presents
the overall procedure of model actor selection. It primarily
consists of the following steps: 1) suitable actor selection;
2) penalty value update; and 3) data dependency release.

1) Suitable Actor Selection: In most cases, there may exist
multiple candidate actors that have no data dependencies point-
ing from others in each iteration of generating a translation
sequence. Mercury adopts the least penalty priority to itera-
tively select the most suitable actor, i.e., selecting an actor
with the minimum penalty value. First, Mercury obtains the
candidate actors based on data dependency analysis according
to the topology-based method in Algorithm 2. Then, Mercury
defines a variable to store the minimum penalty value of can-
didate actors. For each candidate actor, if its penalty value
is lower than the current minimum penalty value, Mercury

Algorithm 3: Model Actor Selection
Input: ActorList: Actors that required translation

Latency: HashMap (actor → actor’s execution latency)
Dependency: HashMap (actor → actors that point to key
actor)

Output: Sequence: Translation sequence
1 // Assgin initial penalty value
2 Penalty = ∅

3 for actor in ActorList do
4 Penalty[actor] = 0
5 end
6 while ActorList �= ∅ do
7 // Obtain candidate actors
8 Actors = getCandidateActors()
9 min = MAX

10 suit = Actors[0]
11 for actor in Actors do
12 penalty = Penalty[actor]
13 if penalty < min then
14 min = penalty
15 suit = actor
16 end
17 end
18 Actors.remove(suit)
19 // Update the exection latency of the selected actor
20 if min > 0 then
21 Latency[suit]+ = min
22 end
23 // Update penalty value for available actors
24 for actor in Actors do
25 Penalty[actor]− = Latency[suit]
26 end
27 // Update data dependency and penalty for subsequent actors
28 for actor in getSubsequentActors(suit) do
29 Dependency[actor].remove(suit)
30 Penalty[actor] = min(Penalty[actor], Latency[suit])
31 end
32 Sequence.push(suit)
33 ActorList.remove(suit)
34 end

will replace the most suitable actor with the current one and
reassign the minimum penalty value (lines 11–17).

2) Penalty Value Update: Since the data required by the
actor may be occupied by others, Mercury introduces the
penalty value to measure the needed clock cycles to obtain
the required data. Before assigning the penalty value for can-
didate actors and subsequent actors, respectively, Mercury
updates the execution latency of the selected actor. Since the
selected actor may have a positive penalty value represent-
ing the required data that has not been released, the execution
latency should be added to the penalty value of the selected
actor to measure the clock cycles for execution precisely
(lines 20–22). For each candidate actor, Mercury subtracts the
execution latency of the selected actor from its penalty value to
eliminate the impact of the selected actor on it (lines 24–26).
As for the subsequent actor, since the data occupied by the
selected actor may be released before other required data, i.e.,
Penalty[actor] > Latency[suit], Mercury should compare the
penalty value with the execution latency of the selected actor
and assign the larger one as the penalty value of the subse-
quent actor. Based on the penalty value of candidate actors
and subsequent actors, Mercury can apply the least penalty
priority to generate a translation sequence that makes full use
of the instruction pipeline.

3) Data Dependency Release: The data dependency inside
Simulink models represents the data transfer from one actor to
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Fig. 6. Example illustrates the process of generating the translation sequence. The green actor represents the candidate actor for generating the translation
sequence. The orange actor means that it has a penalty value. In each step of selecting the most suitable actors, Mercury picks an actor with the minimum
penalty value among the green actors and assigns a penalty value for its subsequent actors turning the color to orange.

another, resulting in the execution of the latter actor requiring
the data generated by the former actor. Therefore, Mercury
needs to generate a translation sequence confirming the order
of data dependencies. In each iteration, after selecting the suit-
able actor, Mercury obtains the subsequent actors of it. Then,
for each subsequent actor, Mercury removes the selected actor
from the corresponding entry of Dependency to release the
useless data dependencies (line 29). The removed data depen-
dencies will contribute to different results in the next iteration
of obtaining the candidate actors.

According to the aforementioned collected information,
Mercury can use the penalty value as the guidance to select
the most suitable actor for translation and generate pipeline-
friendly embedded code. Besides, Mercury follows the data
dependencies to ensure the correctness of generated code.
Based on the least penalty value priority, Mercury can reduce
the occurrences of actors waiting for the required data to exe-
cute, thus minimizing the frequency of instruction pipeline
stalls and improving the efficiency of the generated code.

We take the example shown in Fig. 6 to illustrate the process
of generating a translation sequence. The green actors in the
figure represent the candidate actors while the orange actors
represent candidate actors with a penalty value. When the
green actor has been selected to translate, Mercury releases
data dependencies pointing from this actor. Then Mercury
assigns a penalty value for the subsequent actors and updates
the penalty value of candidate actors. For example, in step
2 , Mercury selects the Div actor for translation and releases

the data dependency with the subsequent Add actor. After
that, Mercury updates the penalty value of Shift actor turning
the color to green and assigns a penalty value to Add actor.
Finally, Mercury will iteratively perform the aforementioned
steps until all of the actors and data dependencies have been
released. Code generation with such translation sequence can
effectively decrease the occurrence of instruction pipeline stalls,
thus improving the execution efficiency of the generated code.

Model Actor Translation: The code synthesis for each actor
in Mercury is basically consistent with Simulink Embedded
Coder and DFSynth. Based on the obtained translation
sequence, Mercury iteratively matches each actor with the
model IR to obtain detailed information, such as actor type,
inports, and outports. Then, Mercury supports well-defined
dynamic link library (DLL) files for different actors to gener-
ate the corresponding code. Since the same type of actors may
have different detailed information, resulting in differences in
the generated code. For example, the generated code of Add
actors with different inport types are not the same, e.g., int and
float. Therefore, Mercury should configure the aforementioned

information as parameters of the corresponding DLL file to
obtain the required code precisely. After that, according to the
order of the translation sequence, the generated code of actors
is synthesized to form the function code of the model. Other
relevant information is encapsulated into some header files for
calling by the main file.

The detailed procedure of code synthesis is as follows.
Mercury first encapsulates the Simulink model into a well-
defined function, while the inports and outports of the
model are stored as structs. For example, a model named
Kalman will be encapsulated in the following function header:
void Kalman_step(void). The structs named Kalman_In and
Kalman_Out are used to store the model’s inports and out-
ports, respectively. Then, Mercury uses several lines of code to
describe the type of each actor according to its complexity and
adds the generated code to the function. The inports of the cor-
responding actor are used as operands in the generated code.
For example, an Add actor accepts data from a Shift actor and a
Mul actor. Then it performs the addition operation. The corre-
sponding code is as follows: Kalman_Add = Kalman_Shift +
Kalman_Mul. The code for each actor is synthesized accord-
ing to the order of translation sequence and data dependencies
between actors to conform the original modeling semantics.
Next, Mercury adopts global variables to describe the states
of the model and other relevant information varies for different
models. Two functions are supported to initialize and release
these variables, respectively. A header file is used to store the
global variables, utility functions, and other definitions such as
struct definition. Finally, Mercury declares a main function to
execute the aforementioned functions and includes the header
files to compose the main file.

V. EVALUATION

Tool Implementation: We implemented Mercury using over
20000 lines of C++ code. We have supported code genera-
tion for Stateflow modeling semantic and Dataflow modeling
semantic. We support almost all algebraic actors, e.g., Add
actor, Product actor, and Abs actor. For each supported actor,
we define a corresponding DLL template for code generation.
It describes the functionality of the actor and other rele-
vant information, i.e., actor name, data type, actor parameters,
inports, and outports. For subsystems of Simulink models, we
define a unique function and perform code generation for each
actor inside the subsystem to implement the defined function.

Experimental Setup: We evaluated the performance of
Mercury on a benchmark of ten commonly used Simulink
models [1] as well as a real industrial model. For benchmark

Authorized licensed use limited to: Tsinghua University. Downloaded on October 27,2022 at 15:35:21 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: MERCURY: INSTRUCTION PIPELINE AWARE CODE GENERATION FOR SIMULINK MODELS 4511

TABLE II
COMPARISON OF THE CODE EXECUTION TIME ON INTEL

models, ABS is a safety anti-skid system model used on
vehicles. BandStop, HighPass, and LowPass are filter models
which are mainly used to filter undesired parts of the signal.
PID is a controller model that is widely used in industrial con-
trol systems; Simpson is a numerical integration model using
Simpson’s rule [18]. Besides, NLGuida is a nonlinear algo-
rithm model for aviation guidance with 16 subsystems and
282 actors, while those models distributed with Simulink con-
tain about 30 actors. AN, Gamma, and Hybrid are multirate
models for different scenarios. For the industrial model, it is
an automotive temperature control module in a vehicle control
system. To investigate the effectiveness, we compared Mercury
with two state-of-the-art code generators, the official Simulink
Embedded Coder [6] and the academic DFSynth [1]. We first
collected the execution time of the generated code on different
architectures, such as Intel x86 and ARM Cortex. Second, the
utilization improvement of pipeline slots was also analyzed
in-depth. Since Simulink Embedded Coder is a built-in tool
for Simulink, we use Simulink for short.

A. Effectiveness on Benchmark Models

To validate the performance of the generated code by
Mercury, we first conducted the experiment on the bench-
mark models. The experiment environment was an industrial
machine running Ubuntu 20.0 x64 (Intel J3160 1.6GHz,
4GB RAM). The compiler we used was the most commonly
used GCC (v9.4.0) with default compile options (gcc *.c
-o out). The code generated by Simulink, DFSynth, and
Mercury were executed with the same times of 10000 for aver-
age results to establish the statistical significance of the results.
While conducting the experiments, we also verified the cor-
rectness of the generated code by comparing the output values
between the simulation and execution.

Table II shows the experiment results and the percent-
age of improvement. Overall, there is a 10.0%–33.4% and
12.1%–59.4% performance improvement for the execution of
the code generated by Mercury, when compared with the code
generated by Simulink and DFSynth, respectively.

The performance of the code generated by DFSynth is rel-
atively limited, mainly because it generates variables to store
data for the parameter and the output of each actor in the
model. Each time the code is executed, these variables are
created in the stack space, resulting in the performance degra-
dation, especially when there are a large number of input
and output ports and actors in the model. As for Simulink,
it can fold some expressions and reuse some output variables.

TABLE III
COMPARISON OF THE CODE EXECUTION ON ARM

Although the code is optimized, the data hazards between
expressions incur massive instruction pipeline stalls, thus
resulting in the inefficiency of the generated code. In contrast,
the higher code performance can be obtained by adjusting the
actor translation order to reduce the instruction pipeline stalls.
For example, the Simpson model calculates the function value
of the midpoint of the interval and two endpoints for numeri-
cal integration. These operations can be performed in parallel,
which allows for a high degree of parallelism at the actor level
of the model. We can generate code from actors without depen-
dencies together, which allows us to better utilize the pipeline
slots. Therefore, Mercury can get performance improvements
of 33.4% and 47.2% compared to Simulink and DFSynth.

Furthermore, to demonstrate the effectiveness of Mercury
on different architectures, we also compiled the code with
GCC on a machine with an ARM processor (ARM Cortex
A72 1.5 GHz) and repeated the above experiments. The result
on ARM is shown in Table III. We can see that Mercury
can achieve 9.7%–21.5% and 9.2%–37.2% performance
improvement compared to Simulink and DFSynth. Comparing
Tables II and III, that is, the experimental results on Intel and
ARM, we can find that the execution efficiency of the code
generated from the same model on different processor archi-
tectures is different. This is mainly because ARM processors
and Intel processors have different memory access strategies.
ARM uses a weakly ordered memory model, while Intel has a
strongly ordered memory model. Besides, Mercury is not only
able to achieve the improvement on Intel and ARM processors
but also on other architectures. The only thing we need to do is
to prepare processor-specific instruction information for code
generation to make Mercury extend to the target architecture.

Besides, we compared our approach with corresponding
GCC optimization (-fschedule-insns), as shown in
Fig. 7. That is, for code generated by Simulink and DFSynth,
we compiled them with this flag. The statistics with suffix
(-insns) means the performance improvement after adding
the optimization flag. Compared with the code generated by
DFSynth, Mercury still can achieve superior results, mainly
because of the way it generates code, as mentioned above.
Compared with the code generated by Simulink, Mercury
achieved better performance on 6 models, while performing
similarly on the other 4. According to the GCC documentation
and implementation, it focuses on reordering memory-load
instructions to avoid pipeline stalls due to required data being
unavailable. However, Mercury considers not only this, but
also the data-processing instructions, which may avoid more
pipeline stalls and achieve the better performance.
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Fig. 7. Comparison of Mercury with the corresponding optimization imple-
mented by GCC. The suffix (-insns) means the generated code is compiled
with -fschedule-insns flag. The histogram shows the improvement
percentage in execution time.

TABLE IV
COMPARISON OF THE UTILIZATION OF INSTRUCTION PIPELINE

B. Utilization of Pipeline Slots

We adopted the performance analysis engine Intel VTune
profiler to analyze the utilization of pipeline slots, to further
validate the effectiveness of our method, i.e., whether it can
decrease the occurrence of instruction stalls to improve the
performance of deployed software.

Table IV demonstrates the utilization of pipeline slots of
the generated code by different tools. It shows that Mercury
achieved better performance than Simulink and DFSynth, and
the code generated by Mercury improved the utilization of
pipeline slots by 11.0%–37.1% and 10.6%–50.0%, respec-
tively. Specifically, compared to other models, the model
named Simpson mainly consists of floating-point operations
that consume lots of clock cycles and introduce massive instruc-
tion pipeline stalls at the backend of the instruction pipeline.
Consequently, it has relatively low utilization of pipeline slots.

To confirm that the root cause of the performance improve-
ment brought by Mercury is decreasing the occurrence of
instruction pipeline stalls, we further performed a correlation
analysis on the results of the execution improvement and uti-
lization improvement, as demonstrated in Fig. 8. We obtain
correlation coefficients of 0.94 and 0.60 between the execution
performance improvement values and the pipeline slots uti-
lization of pipeline slots improvement values for Simulink and
DFSynth, respectively. The correlation coefficient of 0.94 shows
that Mercury actually works to improve the execution efficiency
due to the improved pipeline slots utilization.

As for the correlation coefficient of the comparison with
DFSynth, it is mainly weakened by the slight difference in
code generation for constants. Using the PID model as an
example, the huge execution time improvement is not only due
to the increased pipeline slots utilization, but also the replace-
ment of time-consuming instructions with faster instructions.

Fig. 8. Comparison of correlation between execution improvement and uti-
lization improvement. The histogram shows the percentage the improvement
in execution time. The line chart shows the percentage improvement in the
utilization of pipeline slots.

Fig. 9. Correlation between execution improvement and utilization improve-
ment after constant replacement of the code generated by DFSynth.

Analyzing the compiled assembly code, we found that the
division operations in the code generated by Simulink and
Mercury are compiled to faster operations, such as multiplica-
tion, subtraction, and bit shift when the divisor is a constant. In
contrast, DFSynth translates the constant actor into a variable,
causing the division code to be compiled as an inefficient DIV
instruction. In addition, some multiplication operations also
have been compiled as left shift instructions and additional
instructions. To eliminate the effects caused by the compiler,
we manually performed constant replacement on the code gen-
erated by DFSynth. Then, the experiments were repeated for
execution and pipeline slots utilization of the code. The cor-
relation between the new code performance improvement and
the pipeline slots utilization improvement is shown in Fig. 9,
and the new correlation coefficient is improved to 0.91 from
the previous 0.60, which can demonstrate their positive rel-
ativity. The rest of the gap mainly comes from the model
named ABS which contains a relatively large number of ports.
Mercury and Simulink use global variables to store the value
of inports and outports. However, DFSynth represents these
ports as function parameters in the generated code, incurring
additional overhead in parameter passing.

C. Industrial Case Study

We applied Mercury on a real project from our industry part-
ner to demonstrate the practical capabilities of Mercury. The
model shown in Fig. 10 is an automotive temperature control
module from an autonomous driving project. We divide the
translation sequence obtained in Algorithm 3 into five transla-
tion layers to better elaborate the process of code generation.
The experimental results in Table V show that Mercury brings
10.2% and 20.5% performance improvements of the generated
code over Simulink and DFSynth, respectively. The pipeline
slots utilization results of the generated code also confirm the
effectiveness of Mercury on the industrial model.

For better illustration, we presented the codes generated by
Simulink and Mercury, in Fig. 11. For space limitation, we
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TABLE V
COMPARISON ON INDUSTRY MODEL OF AUTOMOTIVE

TEMPERATURE CONTROL

Fig. 10. Part of the model of automotive temperature control from our
industrial partner. The obtained translation sequence indicated in red circles
is divided into five translation layers.

(a) (b)

Fig. 11. Code snippets is based on the model in Fig. 10. The code on the left
is generated by Simulink, and the code on the right is generated by Mercury.
The comments indicate the translation layer of the actor corresponding to that
line of code. (a) Code generated by Simulink. (b) Code generated by Mercury.

have simplified the code, and the comments are mapped to
the translation layer 1–5 of the actors.

Comparing these two codes, we can see that the calculations
in the code generated by Simulink are result-continuous, that
is, the results of the current statement are used by the next
statement. In contrast, the code from Mercury is generated
layer by layer according to the translation layer, which avoids
the dependence of the next statement on the results of the
previous one as much as possible. For example, in lines 3–5
of the code generated by Simulink on the left side, the variable
k.C in line 5 depends on the operation result k.S1 in line 4,
and k.S1 in line 4 also depends on the variable k.b in line
3. In these three lines, the operations in lines 4 and 5 are
blocked by the operations that precede them, which causes
the instruction pipeline to work inefficiently. In particular, the
impact is greater when multiplication operations are blocked,
because multiplication operations generally require more clock
cycles, as shown in Table I. On the other hand, as for lines 3–5
of the code generated by Mercury on the right side, they are
three multiplication operations without any data dependencies.

So they will not cause the instruction pipeline stall and can
be executed in parallel when three and more arithmetic logic
units (ALUs) exist in the processor.

VI. DISCUSSION

Extensibility of Mercury: Mercury currently supports pars-
ing the representation of Simulink models to generate embed-
ded code. Generally, different model-driven design tools have
their own representations for the corresponding models, result-
ing in difficulties for Mercury to perform code generation. A
possible way to solve this problem is to build a well-structured
IR to support compatibility with different model-driven design
tools. Then, we can apply Mercury to generate pipeline-
friendly code for these models without modifications to the
approach of generating translation sequence. For example, to
support code generation for models of ptolemy [19], we need
to parse “entity,” “port,” “link,” and other relevant ptolemy’s
elements into corresponding elements in IR and extract data
dependencies from it for further usage. Besides, each model-
driven design tool may have unique modeling semantics. To
support code generation for models using such modeling
semantics, Mercury needs to extend the model actor library
for estimating execution latency and support corresponding
well-defined DLL files for code synthesis. Furthermore, we
support code generation not only for Intel and ARM architec-
tures but also for optimized code of other architectures, simply
by configuring the corresponding processor parameter files for
estimating execution latency.

Utilization of Semantics Inside Simulink Model: A Simulink
model has rich and valuable semantics. Mercury mainly uti-
lizes data dependencies to decrease the occurrence of instruc-
tion pipeline stalls to speed up the execution of the generated
code. Besides that, there still exist other valuable semantics
that can be used to optimize the generated code. Mercury can
fully utilize them in two steps. First, parse the related model
files and record valuable semantics for optimization. Second,
for each deficiency, customize a special optimization approach
to solve it. For example, for oversized Simulink models,
Mercury can derive mutually insensitive composite actors with
data dependencies and branching information. Then Mercury
will adopt the OpenMP library to parallelize time-consuming
composite actors. In the future, we plan to proactively ana-
lyze more valuable modeling semantics for improving the
performance of the generated code.

Tradeoffs of Our Approach: Indeed, generating code in a
result-continuous manner like Simulink can reuse register data
to save some overhead. However, it is still worthwhile to avoid
pipeline stalls due to time-consuming operations. For example,
IDIV instruction in the Intel Skylake processor requires more
than 40 clocks for execution. This period can be utilized to
execute other data-independent instructions. Moreover, due to
the mechanisms of cache, the overhead of loading and storing
data is not as large as expected. Our experiments also show
that Mercury achieves the better performance.

Discussion of Code Generation With Least Pipeline Stalls:
In our approach, we adopt a greedy algorithm to decrease the
pipeline stalls inside the generated code, i.e., the least penalty
priority. Since generating the code with the least pipeline stalls
is indeed an NP-hard problem, designing a more sophisticated
heuristic by considering more hardware factors may achieve
the higher performance, e.g., number of ALUs. Our approach
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supports a simple but effective method to decrease pipeline
stalls. It not only achieves the higher performance in the gen-
erated code, but also does not bring much burden on the code
generator. Besides, we did an experiment to investigate and
verify the performance of our approach by traversing all pos-
sible cases of actor scheduling on a benchmark model (2016
cases in total). The statistics show that although our approach
does not reach the global optimal solution, it still exceeds 96%
cases while Simulink only exceeds 5% cases.

Correctness of Generated Code: The data dependencies in
the Simulink model indicate the direction of data transfer
between actors. The mistake order of translation sequence
without conforming to the data dependencies will result in
inconsistent functionality between the model and generated
code. Mercury adopts a topology-based method to obtain the
candidate actors to address the above problem. In other words,
Mercury iteratively selects an actor without any data depen-
dency for translation and releases data dependencies pointing
from the selected actor, thus the data is transferred to the cor-
responding actors. Therefore, Mercury ensures the correctness
of the translation order. Furthermore, we also compare the
execution results of the code generated by different tools (i.e.,
Simulink Embedded Coder, DFSynth, and Mercury), as well
as the simulation results of the original Simulink model, and
they are all consistent.

VII. RELATED WORK

Model-Driven Design: Model-driven design is widely used
in the field of embedded control systems [20]. First, it uses a
low-code approach to build the system. Then, it uses dynamic
simulation to check the correctness of the model. Finally, it
generates high quality code by code generation function. There
are a lot of existing works focusing on the design of model-
driven development tools [2], [21], [22], [23]. For example,
Simulink is one of the most widely used tools in industry [2].
It supports dataflow and stateflow modeling and has good
support for code generation of discrete systems. There are
also some works that focus on the development of certain
domain-specific systems [24], [25]. For example, Tsmart tool
is dedicated to model construction, simulation, and hardware
code generation for vehicle bus control chips through state
machine modeling [26]. A dataflow model usually consists
of actors and data connections. Data connections are usually
used to link the input and output ports of different actors to
represent the flow of data. The function of the actor is to cal-
culate the input data and write the result to the output port
accordingly. In model-driven design tools, dataflow models
are generally hierarchical, meaning that a model with external
input and output ports can be used as a composite actor after
encapsulation. This method of encapsulating a complex system
into a composite actor is also commonly used to embed state
machine models within dataflow models.

Code Generation: Code generation is the most important
part of model-driven design [9], [27]. It converts the con-
structed model into deployable code. For dataflow models,
the code generator often translates the actor one by one
through calculating the data dependencies of the actors in the
model [9]. The complete code is generated by assembling the
translated code from all actors and the configurable code, such
as function headers, global variables, and type definitions [1].
Under the premise that the translation is correct, the efficiency
of the code is crucial. Especially in high-speed scheduling

task systems, the efficiency of the generated code can affect
the performance of the entire control system [10]. Simulink
Embedded Coder is a built-in code generator of Simulink [6].
It can perform code optimization in many aspects, such as
reusable data exploitation and local variable elimination. In
addition, the ability to generate code across platforms and
architectures has made Simulink widely popular.

Main Differences: Mercury differs from these work by uti-
lizing the feature of instruction pipeline with code generation.
Unlike other code generators, Mercury proactively estimates
the execution latency of actors. Based on the execution latency,
Mercury can iteratively determine the most suitable actor with-
out data dependencies in generating the translation sequence,
which decreases the occurrence of instruction pipeline stalls
during the execution of the generated code.

VIII. CONCLUSION

In this article, we propose Mercury, an instruction pipeline
aware code generator for Simulink models. Mercury approxi-
mately estimates the execution latency of each actor and adopts
the least penalty priority to iteratively select the most suitable
actor without data dependencies for generating a translation
sequence. Then, Mercury performs code synthesis for each actor
to generate instruction pipeline-friendly embedded code based
on the obtained translation sequence. We evaluate the effec-
tiveness of Mercury on benchmark and real industrial Simulink
models. Compared with state-of-the-art code generators, such
as Simulink Embedded Coder and DFSynth, Mercury reduces
the execution time of the generated code by 9.7%–33.4%
and 9.2%–59.4% across different architectures and improves
the pipeline slots by 11.0%–37.1% and 10.6%–50.0%, respec-
tively. These results demonstrate that decreasing the occurrence
of instruction pipeline stalls can significantly improve the
execution efficiency of the generated code.
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